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Abstract

We present a framework in which quantum measurement is treated as a control problem
with finite bandwidth. An observer is defined as any physical system that tracks another sys-
tem using finite channel capacity Ceff. When the observer’s internal dynamics generate infor-
mation faster than it can process—quantified by the ignorance rate κ = hKS−Ceff ln 2—the
observer loses track of its own measurement basis θ. Since θ is a physical variable with
causal history (not a free parameter), measurement independence (MI) is violated as a con-
sequence of the control model—not as an assumption or as a claim that Bell’s theorem is
incorrect. The key prediction is double-exponential visibility decay V (t) = exp(− 1

2σ
2
0e

2κt),

qualitatively different from standard Gaussian (e−t2) or exponential (e−γt) decoherence.
The primary experimental signature is a sign reversal: increasing observer capacity should
extend coherence time, opposite to standard thermal decoherence. The predicted timescale
τloss ≈ 1/κ overlaps with Penrose’s objective reduction timescale τOR in the mesoscopic
regime, but the two mechanisms make orthogonal predictions: τloss depends on observer
bandwidth, τOR on mass geometry. We specify falsification criteria.

1 Introduction

The measurement problem in quantum mechanics has resisted solution for nearly a century.
This paper presents a control-theoretic approach: rather than interpreting quantum mechanics,
we ask under what conditions can an embedded physical system maintain knowledge of its own
measurement basis?

We propose a minimal model in which the measurement basis θ is treated not as an abstract
label chosen freely, but as a physical state variable with causal history—implemented by appara-
tus embedded in the same reality as the system being measured. An “observer” is any physical
system that tracks another through a finite-capacity channel. When internal dynamics generate
information faster than this capacity allows, knowledge of the basis degrades in a quantifiable
way. The framework predicts a distinctive double-exponential visibility decay, qualitatively dif-
ferent from standard decoherence, with a sharp experimental discriminator: increasing observer
capacity should extend coherence time—the opposite sign from thermal decoherence, where
more power means more heating.
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Sections 2–3 formalize the model; Sections 4–5 derive the dynamics; Section 6 presents testable
predictions; Sections 7–8 compare with Penrose objective reduction and specify falsification
criteria.

2 The Measurement Basis as Physical Variable

In standard treatments, the measurement basis θ is treated as a “free parameter”—something
the experimenter chooses independently of the system being measured. But θ is not an abstract
label; it is implemented by physical apparatus (a polarizer orientation, a magnetic field direction,
a phase reference). The “choice” of θ is itself a physical process: neural activity → motor
commands → servo actuation → apparatus configuration. This causal chain is not external to
physics.

Bell’s derivation assumes statistical independence between θ and λ (measurement independence,
MI). The present framework does not assume MI violation; rather, MI violation emerges as a
consequence of treating the measurement basis as a physical variable subject to control-theoretic
constraints. When the observer is embedded in the same physical reality it measures, and when
its capacity to track its own basis is limited, the “free choice” of θ becomes operationally
constrained—θ and λ share common causal past, providing a natural route to correlations with-
out fine-tuning or cosmic conspiracy. Palmer [1] formalizes a similar constraint geometrically as
state-space admissibility (certain counterfactuals are “off-manifold”). The present framework
arrives at the same constraint from the operational level: an embedded observer with finite
capacity cannot enact arbitrary counterfactuals while holding internal variables fixed.

The following sections develop a quantitative framework: we first define the observer’s capacity
and the apparatus’s information-generation rate, then show how their interplay determines when
tracking fails and what observable consequences follow.

3 The Tracking Problem

3.1 Definitions

We define an observer as any physical system that:

1. Uses energy to track or interact with another system
2. Has finite channel capacity Ceff (bits/s or nats/s)

The Landauer limit bounds the maximum achievable capacity given available power P and
temperature T :

C =
P

kT ln 2
(bits/s) (1)

Realistic systems achieve Ceff = η C with efficiency η ≪ 1 due to architectural overhead,
latency, and dissipation. The operational definition of Ceff (Section 3.5) is what matters for the
predictions.
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3.2 Apparatus Dynamics: hKS

We characterize the observer’s apparatus by its Kolmogorov-Sinai entropy rate hKS—the information-
production rate of the classical degrees of freedom (voltage references, timing circuits, feedback
loops) that define and maintain the measurement basis.

Even deterministic feedback loops can exhibit chaotic sensitivity: tiny untracked differences
grow exponentially, characterized by positive Lyapunov exponents and quantified by hKS. Mea-
surement apparatus naturally tends toward high hKS because amplification from microscopic
quantum events to macroscopic records requires nonlinear or threshold dynamics, which generi-
cally produce chaos. In contrast, purely diffusive dynamics (hKS → 0) produce only slow, linear
growth of uncertainty—a limiting case where the framework predicts no capacity-dependent
effects.

Quantum error correction can be understood as engineering that suppresses chaotic sensitivity,
keeping hKS low—though this suppression may ultimately fail at scale when controller band-
width cannot keep pace with system entropy [9].

3.3 The Data-Rate Theorem: Scope and Application

The Data-Rate Theorem (DRT) establishes a necessary condition for mean-square stabilization:
for a scalar unstable linear plant with Lyapunov exponent λ, stabilization over a finite-capacity
channel requires C > λ/ ln 2 [2, 3].

Assumption/Extension: We model basis tracking as an estimation/control loop whose ef-
fective instability is characterized by the Kolmogorov-Sinai entropy rate hKS (metric entropy).
When hKS > Ceff ln 2, the DRT implies tracking error must exceed any fixed tolerance in finite
time.

This extends the canonical DRT setting (linear plant, Gaussian noise). For nonlinear systems,
analogous results exist: Nair et al. established topological conditions for feedback stabilization
over finite-rate channels [3], and Kawan’s invariance entropy framework [4] ties required data
rates to Lyapunov-type quantities in general dynamical systems. We treat our application as a
working hypothesis whose validity is tested by the experimental predictions below.

3.4 The Ignorance Rate

We define the ignorance rate κ as the gap between information generation and processing
capacity:

κ = hKS − Ceff ln 2 (2)

Following the DRT condition, this defines two regimes:

� Capacity-wins (κ < 0): Observer can in principle keep up with basis tracking
� Chaos-wins (κ > 0): Tracking error must grow without bound

3.5 Operational Estimators

For the framework to be testable, Ceff and hKS must be operationally defined.
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Effective capacity Ceff: We define Ceff as the effective information rate in the basis-tracking
loop (not the whole device):

Ceff = r · b · f (3)

where r is the update rate (Hz), b is the effective bits per update constraining θ, and f ∈ (0, 1]
is the fraction of updates that actually constrain θ after overhead and latency. In a controlled
experiment varying Ceff, r would be the primary knob.

Metric entropy rate hKS: For chaotic systems, hKS equals the sum of positive Lyapunov
exponents (Pesin identity). We estimate hKS from the rate at which prediction error grows with
prediction horizon: given controller state xt, track how |xt+n∆−gn(xt)| increases with n, where
gn denotes n iterations of a fitted model. The exponential growth rate estimates λmax, which
provides a practical proxy (and lower bound) for hKS. Standard algorithms apply to logged
digital controller states (e.g., FPGA-based readout). The experiment should verify hKS > 0
before testing capacity dependence.

4 Minimal Model

Having established when tracking fails (κ > 0), we now specify a minimal model to derive what
happens to the observer’s knowledge of its own measurement basis.

State variables:

� ξ(t): hidden ontic state of the measured system
� θ(t): observer’s internal measurement basis (a physical variable, not a free parameter)
� x(t): additional apparatus degrees of freedom

Dynamics: Both ξ and θ evolve deterministically from initial conditions. The observer cannot
fully reconstruct the causal history of its own θ. Since capacity limits can explain apparent
randomness—tracking failure produces outcomes indistinguishable from fundamental noise—
positing fundamental randomness in addition adds no explanatory power. By parsimony, we
adopt the deterministic framework; the experiment below tests whether this is empirically
correct.

Measurement independence: An embedded observer with finite capacity cannot set θ in-
dependently of its causal history. The process of “choosing” θ involves physical dynamics that
share common past with ξ. When hKS > Ceff ln 2, the observer loses track of its own basis, mak-
ing measurement independence operationally unachievable. This provides a natural mechanism
for the correlations that Palmer’s invariant set theory [1] formalizes geometrically: certain coun-
terfactual measurement settings are dynamically inaccessible, not because of cosmic fine-tuning,
but because of capacity constraints.

Measurement: At time tm, the outcome is a deterministic function:

A = A(ξ(tm), θ(tm), x(tm)) (4)
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5 Basis Uncertainty

5.1 Basis Tracking Error

Due to finite capacity, the observer’s estimate θ̂ of its own basis has uncertainty σθ. The
realized θ(tm) may differ from the intended value θ0. The key distinction is between the frame
the observer believes it has (θ̂) and the physical frame of the apparatus (θ). The observer
records outcomes as if θ = θ0, but the actual measurement was made in basis θ = θ0 + δθ. This
mismatch, not environmental decoherence, is the source of visibility loss.

Conventionally, experimentalists treat θ as a known control parameter; unexpected outcomes
are attributed to quantum randomness or detector noise, both of which produce exponential or
Gaussian visibility decay. The present framework predicts a qualitatively different signature:
double-exponential decay with breakdown time tbreak ∝ 1/κ. This distinctive structure—not
the mere existence of noise—is what distinguishes tracking failure from standard decoherence,
and explains why the effect has been overlooked: without looking for the specific functional
form, the signature appears as ordinary noise and is discarded.

The framework does not require that capacity limits be uncircumventable in principle. It re-
quires that for a given observer with given capacity, the limit exists and has predictable conse-
quences. If Ceff increases, tbreak should increase accordingly (Eq. 10). The claim is that wherever
the capacity limit lies, it determines visibility loss via κ. Whether one labels this “fundamental”
or “technical” is a terminological choice; the experimental predictions are identical.

5.2 Dynamics

In the chaos-wins regime (κ > 0), we model the basis estimation error as inheriting the ex-
ponential separation rate of the uncontrolled dynamics, reduced by the effective information
rate of corrective updates. For a chaotic mode with Lyapunov exponent λ, uncorrected estima-
tion error scales as eλt; therefore its variance scales as e2λt. Finite-rate correction reduces the
effective exponent by Ceff ln 2, yielding:

d

dt
lnσ2

θ ≈ 2(hKS − Ceff ln 2) = 2κ (5)

This is a modeling claim, not a theorem. The experiment below tests this scaling directly:
if visibility decay follows Eq. (8) with the predicted κ-dependence, the model is supported; if
not, it is falsified.

Integrating Eq. (5):
σ2
θ(t) = σ2

0 e
2κt (6)

The threshold-crossing time for uncertainty to grow from σ2
0 to tolerance σ2

tol is:

τloss =
1

2κ
ln

(
σ2
tol

σ2
0

)
(κ > 0) (7)
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5.3 Visibility Decay

When the observer has Gaussian uncertainty in its measurement basis, the observed visibility
(fringe contrast) decays as:

V (t) = exp

(
−σ2

0

2
e2κt

)
(8)

where σ2
0 is the initial basis uncertainty at t = 0, set by apparatus calibration and initialization

quality.

Validity: This assumes Gaussian angle uncertainty and is accurate for σθ ≲ 1 rad. For larger
uncertainties, higher cumulants contribute and suppression saturates.

Derivation: The observer intends basis θ0 but realizes θ = θ0 + δθ where δθ ∼ N (0, σ2
θ).

Averaging the interference term cos(ϕ− θ) over this distribution:

⟨cos(ϕ− θ)⟩ = cos(ϕ− θ0) · e−σ2
θ/2 (9)

5.4 Observable Breakdown Time

Define V∗ ∈ (0, 1) as a visibility threshold. The breakdown time tbreak is when V (tbreak) = V∗:

tbreak =
1

2κ
ln

(
−2 lnV∗

σ2
0

)
(κ > 0) (10)

This is the primary experimental observable.

6 Consequences for Bell Correlations

Treating θ as a physical variable leads to MI violation as a consequence of the control model.
This does not mean Bell’s theorem is incorrect—the theorem is valid given its premises—but the
premises are not satisfied for embedded observers with finite capacity. The result is attenuated
correlations, not “Bell violation.”

With Gaussian basis uncertainty σ2, marginals remain exactly 50/50 (no signaling), but joint
correlations are attenuated:

⟨E⟩ = − cos(θA − θB) · e−(σ2
A+σ2

B)/2 (11)

As uncertainty grows, the CHSH parameter |S| decreases from 2
√
2 toward zero—correlations

fall below ideal QM predictions.

The novel prediction is the κ-dependent scaling: σ2(t) = σ2
0e

2κt, yielding double-exponential
visibility decay V (t) = exp(−1

2σ
2
0e

2κt) with breakdown time tbreak ∝ 1/κ. Figure 1 illustrates
this.

7 Testable Predictions

The framework makes specific predictions that distinguish it from standard decoherence. The
definitive test is the sign of the power dependence. Standard thermal decoherence predicts

6



0 1 2 3 4 5
Time t (units of 1/hKS)

0.0

0.2

0.4

0.6

0.8

1.0
Vi

sib
ilit

y 
V(

t)

V *

tbreak (low Ceff) tbreak (med Ceff)

Double-Exponential Visibility Decay
V(t) = exp ( 1

2
2
0e2 t)

High Ceff ( = 0.17)
Medium Ceff ( = 0.45)
Low Ceff ( = 0.72)
Standard exponential (e t)

Figure 1: Double-exponential visibility decay for three capacity levels. Visibility V (t) =
exp(− 1

2σ
2
0e

2κt) is plotted for high capacity (green, κ = 0.17), medium capacity (blue, κ = 0.45), and
low capacity (red, κ = 0.72). Lower observer capacity Ceff yields higher κ = hKS − Ceff ln 2, causing
earlier breakdown. The arrows mark tbreak, the time when visibility crosses the threshold V∗ = 0.5. For
comparison, standard exponential decoherence (e−γt, gray dash-dot) decays steadily from t = 0, whereas
the double-exponential curves remain near unity before collapsing—a qualitatively distinct signature.
The prediction: reducing Ceff shifts tbreak leftward.

∂V/∂P < 0: increasing controller power increases heat load, which reduces coherence. The
present framework predicts the opposite—∂V/∂P > 0: increasing observer power increases
Ceff via the Landauer bound, which extends coherence time. This sign reversal is the primary
falsification signature.

The sign reversal is only observable when environmental temperature T is actively stabilized.
Without constant T , any power increase will also increase temperature, and the standard ther-
mal effect (∂V/∂T < 0) will mask the information-theoretic effect. The experiment requires
varying P while clamping T via active feedback.

Visibility should follow the double-exponential decay V (t) = exp(−1
2σ

2
0e

2κt), qualitatively dis-

tinct from standard exponential (e−γt) or Gaussian (e−t2) decoherence. The characteristic
timescale satisfies tbreak ∝ 1/κ where κ = hKS − Ceff ln 2. Higher apparatus entropy rate hKS

should produce faster visibility loss (smaller tbreak), independent of environmental decoherence
channels.

A comprehensive experimental protocol specifying platform requirements, statistical analysis
plans, and detailed procedures is available separately [5]. The QGEM collaboration’s pathfinder
apparatus [8], designed for extreme isolation and cryogenic operation with mesoscopic masses,
may provide a near-term platform for testing the sign-reversal prediction under controlled con-
ditions.
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8 Connection to Penrose Objective Reduction

The framework’s predictions can be compared with other approaches to quantum state reduc-
tion. Penrose’s gravitational Objective Reduction (OR) provides a natural comparison because
both predict characteristic timescales that depend on measurable system parameters—enabling
experimental discrimination.

Penrose proposes that quantum superpositions become unstable due to gravitational self-energy,
giving a characteristic timescale [6]:

τOR =
ℏ
EG

∼ ℏs
Gm2

(12)

where m is the mass in superposition and s is the spatial separation. For mesoscopic masses
(m ∼ 10−15 kg) with separations of 100 nm–1 µm, this gives τOR ∼ 10–100 ms.

The present framework predicts a tracking-loss timescale in the chaos-wins regime:

τloss ≈
1

κ
=

1

hKS − Ceff ln 2
(13)

For apparatus parameters hKS ≈ 50 nats/s and Ceff ≈ 10 bits/s (Ceff ln 2 ≈ 7 nats/s), we obtain
κ ≈ 43 nats/s and τloss ≈ 1/κ ≈ 23 ms. Including the log factor from Eq. (7) for 1–5% visibility
thresholds contributes a factor of 2–3, giving τloss ≈ 50–70 ms.

Numerical proximity: For the apparatus parameters above, τloss falls near the Penrose-
predicted τOR range for mesoscopic systems.

Different predictions: Despite this proximity, the frameworks make orthogonal predictions:

� Penrose OR: gravitational instability; τOR depends on mass and geometry, independent
of observer bandwidth

� Present framework: information-theoretic tracking limits; τloss depends on observer band-
width, independent of spatial geometry

This enables experimental discrimination:

Test Penrose OR This framework

Vary power P at fixed mass No effect on τ τloss increases
Vary temperature T at fixed mass No effect on τ τloss decreases
Vary separation s at fixed Ceff τOR increases No effect on τloss

The power/temperature test is the primary discriminator: if increasing observer bandwidth (via
Ceff ≤ P/(kT ln 2)) extends coherence time, the information-theoretic mechanism is operative.
If coherence time depends only on mass and geometry, gravitational OR dominates.

Penrose OR is considered foundational because it connects collapse to gravity—a universal phys-
ical phenomenon. The present framework connects collapse to information-theoretic limits—
equally universal, as all physical observers are subject to thermodynamic constraints (Landauer
bound). Thermodynamic approaches to gravity—notably Jacobson’s derivation of Einstein’s
equations from local horizon thermodynamics [7]—suggest these domains may be more deeply
connected than their separate formulations imply. If gravitational and information-theoretic
scales are fundamentally linked, the numerical proximity of τloss and τOR might reflect structure
rather than coincidence—a possibility the discriminating experiments above could illuminate.
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9 Falsification Criteria

The framework is falsified if any of the following hold:

1. Wrong sign (primary test): At constant temperature, increasing observer power P
fails to extend coherence time, i.e., ∂tbreak/∂P ≤ 0. This sign reversal is the definitive
discriminator from standard thermal decoherence.

2. No chaos dependence: tbreak independent of apparatus chaos rate hKS

3. Wrong functional form: V (t) fits ordinary exponential or power-law decoherence but
not the double-exponential structure V (t) = exp(−1

2σ
2
0e

2κt)
4. Gravitational scaling: Coherence timescale tracks mass/geometry (∝ m−2 or ∝ s)

rather than observer bandwidth—gravitational OR dominates
5. Marginal violation: Single-party statistics deviate from 50/50, indicating signaling or

systematic bias

10 Conclusion

We have presented a framework in which measurement is treated as a control problem. The
observer must maintain knowledge of its own measurement basis θ(t) while its apparatus gen-
erates chaotic dynamics. When the apparatus entropy rate exceeds processing capacity, basis
uncertainty grows exponentially.

The key prediction is operational: in the chaos-wins regime, visibility decays as V (t) = exp(−1
2σ

2
0e

2κt),
with breakdown time inversely proportional to κ. Because treating θ as a physical variable leads
to MI violation as a consequence (not an assumption), the framework operates where Bell’s
premises are not satisfied—this is not a claim that Bell’s theorem is incorrect. The testable
claim is that observed correlations should fall below ideal QM predictions when bandwidth is
limited, with the specific functional form distinguishing this from standard decoherence. Con-
trolled variation of observer capacity would provide a direct experimental test. These predictions
are falsifiable.

The framework’s timescale τloss ≈ 1/κ overlaps with Penrose’s τOR in the mesoscopic regime
(∼50–70 ms), but predicts different dependences—bandwidth vs. mass geometry—enabling ex-
perimental discrimination.

If the predicted capacity dependence is observed, the deterministic interpretation becomes par-
simonious: the capacity mechanism already explains apparent randomness, leaving no explana-
tory role for fundamental randomness. The conspiracy objection does not apply because mea-
surement independence fails due to physical constraints, not cosmological fine-tuning.
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