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Abstract

Current approaches to Fault-Tolerant Quantum Computing (FTQC) assume that scal-
ing is limited primarily by environmental decoherence and gate �delity. Building on the
Data-Rate Theorem from control theory and recent forensic analysis of quantum proces-
sor recovery dynamics, we propose a hypothesis: that a more fundamental constraint
may exist�the �nite information processing capacity of the classical control system. By
modeling the Quantum-Classical Interface (QCI) as a rate-limited information channel, we
derive a condition where the entropy generation rate of the N -qubit system (λN ) exceeds
the error-correction bandwidth (CN ln 2). Under this model, hardware platforms exhibit a
structural bifurcation: the model forecasts a qubit-count wall for superconducting sys-
tems (Nmax ∼ 103�106 depending on the scaling exponent p), while photonic systems would
face a threshold at N = 1 but scale linearly thereafter. Trapped ions avoid both walls but
face bandwidth latency limiting algorithm depth. The only theoretical escape�native topo-
logical qubits with sublinear scaling (p < 1)�remains experimentally unrealized; synthetic
topological codes on standard hardware inherit the limits of the substrate. We present cor-
relational evidence from Google Sycamore (6.5% stable delayed-geometry signatures under
rigorous model-based classi�cation, with 64% boundary events) and Chinese 63-qubit pro-
cessors (uniformly fast recovery, serving as a qualitative capacity-wins baseline), consistent
with the predicted two-regime structure. If the model is correct, the thermodynamic cou-
pling between controller bandwidth and system entropy (the �Catch-22�) would imply that
no current hardware platform possesses the simultaneous C, λ, and p parameters required
for cryptographic-scale fault tolerance. We do not claim that fault-tolerant quantum
computing is impossible in principle. Rather, we test a speci�c bottleneck hypothesis:
that for cryogenic platforms where controller bandwidth, heat load, and multi-qubit error
correlations co-scale, the classical control loop may saturate before cryptographic-scale fault
tolerance is reached. We propose a decisive experimental test�the Power-Scaling Test�that
can con�rm or falsify the hypothesis.

�Each individual Anu is called Avidya, Ignorance.�

� Sri Yukteswar, The Holy Science (Sutra 4)
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1 Introduction

� The Problem: The �Quantum Scaling Stagnation.� Despite improvements in T1/T2,
scaling logical qubits has proven non-linear and di�cult. Increasing Code Distance (d)
often yields diminishing returns.

� The Standard View: Scaling is limited by correlated noise, cosmic rays, and crosstalk.
Solution: Better materials, shielding, and larger codes.

� The Proposed View: Scaling is limited by the Thermodynamics of Control. The
classical controller must track the quantum state's phase evolution. This tracking requires
a bandwidth that scales with system entropy.

� Hypothesis: There exists an Ignorance Wall where the complexity of the entangled
state grows faster than the controller's ability to ingest syndrome data, leading to a �Blind
Spot� where error correction fails.

Paper Structure. Section 2 reviews the Data-Rate Theorem and existing empirical evidence
for capacity-limited behavior in quantum hardware. Section 3 derives the tracking equation and
de�nes the stability condition. Section 4 applies this framework to predict scaling laws for di�er-
ent qubit technologies, identifying the �Ignorance Wall.� Section 6 proposes experimental tests
that could falsify the framework. Section 7 argues that the capacity constraint is fundamental,
not merely technological. Section 8 summarizes implications and limitations.

Claims vs. Non-Claims

� Claim (conditional): Under the tracking ansatz (Eq. 5), platforms with super-
linear λN and ≤linear CN exhibit an Nmax.

� Claim (testable): At �xed chip temperature, increasing e�ective syndrome
throughput should increase coherence/logical performance if the system is capacity-
limited.

� Non-claim: We do not prove that QEC must fail for all architectures, nor that
quantum computation is impossible in principle.

2 Prior Work: The Information-Theoretic Control Limit

The Ignorance Wall hypothesis builds upon the Ignorant Observer Framework (IOF), which
applies the Data-Rate Theorem from control theory to quantum measurement [1]. This sec-
tion summarizes the theoretical foundation and empirical validation that motivates the present
analysis.

2.1 The Data-Rate Theorem

The Data-Rate Theorem [4,5] establishes a fundamental limit on stabilizing unstable dynamical
systems over �nite-capacity channels. For a system with Lyapunov exponent λ (measuring the
rate of trajectory divergence), the minimum channel capacity required for stabilization is:

Cmin =
λ

ln 2
[bits/s] (1)
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Within its modeling assumptions, this is a mathematical theorem: if C < λ/ ln 2, tracking fails.
We use this as a guiding bound for the QEC control loop, while acknowledging that the mapping
to real QEC dynamics involves the ansatz developed in Section 3.

2.2 Two Regimes

The IOF identi�es two distinct operational regimes separated by the critical inequality λ ≶
C ln 2:

� Capacity-Wins (C ln 2 > λ): The observer/controller has su�cient bandwidth to track
the system. Standard quantum mechanics is recovered; coherence is maintained.

� Chaos-Wins (λ > C ln 2): The system's complexity exceeds the controller's tracking ca-
pacity. The controller becomes �informationally blind,� leading to loss of phase coherence.

The information de�cit rate κ = λ−C ln 2 (in nats/s) governs the timescale of tracking failure.
Since amplitude σ grows as eκt (variance σ2 as e2κt), the amplitude e-folding time is:

τloss =
1

κ
=

1

λ− C ln 2
(κ > 0) (2)

Throughout this work, τloss refers to amplitude e-folding; the variance e-folding time is τvar =
1/(2κ).

2.3 Empirical Validation: Forensic Signatures

The two-regime framework has been investigated through forensic analysis of existing experimen-
tal datasets [2]. The primary methodology uses model-based classi�cation: �tting multiple
functional forms (exponential, sigmoid, delayed-exponential) to recovery curves and selecting the
best model via AICc. Events are classi�ed across multiple analysis windows to identify stable
populations (consistent classi�cation) versus boundary/�ip events (classi�cation-sensitive).

� Stable Fast (capacity-wins geometry): Immediate exponential recovery; best-�t model is
exponential or rational across all windows.

� Stable Delayed (chaos-wins geometry): Delayed recovery onset; best-�t model is sigmoid
or delayed-exponential across all windows.

� Flip/Boundary: Classi�cation varies with analysis window; events near the decision
threshold with weak model discrimination.

Analysis of two quantum processor architectures revealed:

1. Chinese 63-qubit processor (Li et al., 2025): Uniformly fast exponential recovery (sub-
millisecond), serving as a qualitative capacity-wins baseline. Due to di�erences in observ-
ables (charge-parity jumps vs. aggregate error counts) and sampling cadence, this is treated
as a qualitative comparison rather than quantitative validation.
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2. Google Sycamore (McEwen et al., 2022): Of 230 cosmic ray events, 29.6% showed sta-
ble fast geometry, 6.5% showed stable delayed geometry (consistent hesitation signature),
and 63.9% were boundary/�ip events with classi�cation-dependent outcomes. The sta-
ble delayed population provides weak evidence for hesitation-like dynamics�su�cient to
warrant prospective tests, but not strong enough to claim a robust signature.

Similar patterns have been observed in LIGO gravitational wave interferometers, where 33.6%
of analyzable glitches show stable delayed geometry with strong curvature discrimination (AUC
= 0.950) [2]. The full forensic analysis across multiple platforms is presented in [2].

Key Finding: Both regimes appear to exist in current hardware. The evidence is correlational
and consistent with a physical phase boundary, but controlled experiments (varying bandwidth
at constant temperature) are needed to establish causation. This paper extends this framework
to analyze how the Ignorance Wall would scale with system size N if the hypothesis is correct.

3 Theoretical Framework

Notation: In this paper we write λ for the e�ective entropy-rate (corresponding to hKS in the
experimental protocol) and C for e�ective syndrome throughput in bits/s (corresponding to Ceff

in the protocol). The de�cit rate κ = λ − C ln 2 plays the same role as κ in the main IOF
framework.

3.1 The Controller as a Finite Observer

We model the quantum computer as a closed-loop control system:

1. Plant: The qubit array, whose quantum state evolves under both coherent dynamics and
environmental perturbations.

2. Observer: The classical controller (FPGA/Cryo-CMOS), which estimates the system
state from syndrome measurements.

3. Channel: The readout/control lines, characterized by �nite Shannon capacity C (bits/s).

3.2 Derivation of the Tracking Equation

The tracking equation follows from standard results in stochastic control theory [4,5]. We present
a modeling ansatz�not a theorem of nature�that connects these results to quantum error
correction. Whether this model class accurately describes QEC dynamics is an empirical question
(see Section 6).

What σ2 Represents in QEC:

In quantum error correction, the decoder maintains an estimate of the Pauli frame�the cu-
mulative record of which errors have occurred and been corrected. Let e(t) denote the true
error con�guration (a vector over the Pauli group) and ê(t) the decoder's estimate. We de�ne
σ2 = E[∥e − ê∥2] as the expected squared error in the Pauli frame estimate, normalized to be
dimensionless.
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This is not the same as the logical error rate�it is the decoder's uncertainty about the current
error state, which determines whether future corrections will be applied correctly.

Step 1: Error Accumulation (Entropy Production)

In the absence of syndrome measurements, errors accumulate stochastically. For an N -qubit
system with per-qubit error rate p and measurement cycle time τc, approximately Np/τc new
error bits are generated per second. Each error bit adds ∼ 1 nat of entropy to the Pauli frame.
We model this as:

dσ2

dt

∣∣∣∣
errors

≈ λsys (3)

where λsys is the e�ective entropy generation rate. The identi�cation λ0 ∼ 1/T2 (base dephas-
ing rate) is an ansatz: we posit that the intrinsic decoherence rate sets the baseline entropy
generation. This is physically motivated�dephasing represents loss of phase information�but
the precise coe�cient is system-dependent and should be calibrated empirically.

Step 2: Syndrome Acquisition (Entropy Extraction)

Each syndrome measurement provides classical information about the error state. By Shannon's
source coding theorem, a channel of capacity C bits/s can reduce entropy at most at rate C
bits/s. For a Kalman-like estimator, variance reduction is multiplicative:

dσ2

dt

∣∣∣∣
syndromes

= −C ln 2 · σ2 (4)

The factor ln 2 converts bits to nats. The multiplicative dependence on σ2 re�ects that mea-
surements are more informative when uncertainty is larger.

Step 3: The Combined Model

Combining error accumulation with syndrome-based correction yields the competition equation:

dσ2

dt
= λsys − Cctrl ln 2 · σ2 (5)

This is a linear variance-balance ansatz inspired by Kalman �ltering [11] and the Data-Rate
Theorem [4,5]. We do not claim it is the unique or exact dynamics of QEC decoders�real
decoders (e.g., MWPM, Union-Find) have discrete, nonlinear dynamics. Rather, we propose
that Eq. (5) captures the essential competition between entropy production (λ) and entropy
extraction (C), and that this competition determines whether tracking succeeds or fails.

Relation to Open-Loop Tracking (Section 2):

The QEC tracking equation di�ers structurally from the pure exponential growth σ2(t) = σ2
0e

2κt

described in Section 2. In that open-loop setting, errors compound multiplicatively (chaotic
trajectory divergence), and capacity only reduces the growth rate. Here, errors inject at constant
rate λ (additive), while syndrome measurements reduce variance proportionally (multiplicative
feedback). The result is a steady-state rather than unbounded growth. Failure in QEC occurs
when this steady-state exceeds the code threshold (σ2

ss > ϵ), not from divergence. Crucially,
the regime boundary λ > C ln 2 is identical in both models�only the within-regime dynamics
di�er.

Units and Dimensional Consistency:

We work in a normalized coordinate system where σ2 is dimensionless. In this convention:

� λ has units of [1/s] = [nats/s], interpretable as entropy generation rate
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� C has units of [bits/s]; the factor ln 2 converts to [nats/s]

� The ratio λ/(C ln 2) is dimensionless, as required for σ2
ss

Connection to Classical Information Throughput:

For quantum systems, Cctrl represents the classical information rate at which syndrome data can
be extracted and processed. For syndrome extraction in QEC, a natural entropy-rate upper
bound heuristic is:

Cctrl ≲
N∑
i=1

ri ·H(pi) (6)

where ri is the measurement rate for syndrome bit i, andH(pi) = −pi log2 pi−(1−pi) log2(1−pi)
is the binary entropy of that syndrome outcome. This is not a rigorous theorem but a modeling
approximation: we assume the classical information extracted per measurement is bounded by
the entropy of the syndrome outcomes. The Holevo capacity (which bounds quantum-to-classical
information transfer for general quantum ensembles) addresses a di�erent question; here we are
concerned with the rate of classical syndrome bits reaching the decoder.

This bound establishes that Cctrl is not arbitrary but determined by measurable experimental
parameters: the syndrome extraction rate and the entropy of syndrome outcomes.

Where is the Bottleneck? The capacity C in this framework refers to the rate at which
classical information about the quantum state can be extracted and processed�not the quantum
measurement bandwidth per se. In a QEC system, the bottleneck is typically the classical
processing chain: syndrome decoding, error identi�cation, and feedback computation. While
quantum measurements may occur rapidly, the classical controller must interpret and act on this
data. The limit is thus on classical syndrome throughput�how many bits of error information
per second can be extracted, decoded, and acted upon.

3.3 The Stability Condition

The steady-state solution of Eq. (5) is:

σ2
ss =

λsys

Cctrl ln 2
(7)

For QEC to succeed, this uncertainty must remain below the code's error threshold ϵ:

σ2
ss < ϵ =⇒ Cctrl >

λsys

ϵ ln 2
(8)

When Cctrl < λsys/(ϵ ln 2), the steady-state uncertainty exceeds the code's error threshold:
tracking fails not because the variance diverges, but because it stabilizes at an unacceptably
high value. This is the capacity-limited regime: the controller cannot reduce uncertainty
below the level required for reliable error correction.

3.4 The Ignorant Observer Principle

The tracking equation (Eq. 5) is not an ad-hoc model for quantum control�it is a universal
constraint on any physical observer. The underlying principle is simple [1]:
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1. The controller is a physical system with internal dynamics characterized by a diver-
gence rate λ (how fast internal states drift apart).

2. The controller has �nite capacity C (bits/s)�no physical substrate can process un-
limited information.

Any system tracking an internal variable (whether a quantum error syndrome, a measurement
basis angle, or a classical reference signal) obeys the fundamental competition:

dσ2

dt
= λ︸︷︷︸

chaos adds variance

− C ln 2 · σ2︸ ︷︷ ︸
capacity reduces variance

This yields an irreducible steady-state uncertainty:

σ2
ss =

λ

C ln 2
(9)

Structural Correspondence 3.1 (Epistemic vs. Ontological Interpretation). The IOF interprets
this limit as epistemic, not ontological: σ2 re�ects the controller's inability to trace the causal
history of the system's state. Under this interpretation, the quantum system has a de�nite con-
�guration at every moment; the controller simply cannot track it perfectly. This �informational
blindness� is what the Ignorance Wall describes. Note: This interpretive stance is not required
for the operational predictions of the model�readers may treat the framework instrumentally
without adopting its ontological commitments.

Application to QEC: In quantum error correction, the �observer� is the classical control
system (FPGAs, decoders, feedback loops). Its λ is set by the rate at which the quantum system
generates entropy (errors); its C is set by the syndrome extraction and processing bandwidth.
The Ignorant Observer Principle guarantees that any such controller faces the same fundamental
trade-o�, regardless of implementation details.
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3.5 Scope and Assumptions

Operational De�nitions for This Framework

� λN (entropy generation rate): The rate at which the Pauli frame uncertainty
grows in the absence of syndrome measurements. Operationally: could be estimated
from the rate of syndrome bit �ips in a free-running (no correction) experiment, or
from λ0 ≈ 1/T2 scaled by the crosstalk exponent p.

� CN (syndrome extraction capacity): The mutual information rate between
the true error state and the classical syndrome stream. Operationally: CN ≈
N ·rsyn ·H(psyn), where rsyn is the syndrome measurement rate and H(psyn) is the
entropy per syndrome bit.

� Failure criterion: The model predicts failure when σ2
ss = λN/(CN ln 2) > ϵ, i.e.,

when steady-state uncertainty exceeds the code's error threshold. In practice, this
manifests as logical error rate exceeding a threshold, or coherence time falling below
the algorithm runtime.

� Scaling exponent p: De�ned by λN = λ0 ·Np. Currently estimated from device
architecture (e.g., p ≈ 1.5 for surface codes with ZZ crosstalk), but should be
measured directly from multi-qubit coherence scaling.

Key assumption: The linear variance-balance model (Eq. 5) captures the essential
dynamics. This is a modeling ansatz, not a proven theorem.

4 Scaling Laws: The �Ignorance Wall�

4.1 Scaling of Chaos (λ)

The system Lyapunov exponent λN characterizes how fast unknown perturbations (dephasing,
crosstalk, cosmic rays) corrupt the global phase reference. We consider three physical mecha-
nisms:

1. Coupling-Induced Chaos: In a system of N qubits with pairwise interactions, the number
of coupling terms scales as

(
N
2

)
∝ N2 for fully connected graphs, or ∝ N for nearest-neighbor

topologies. Each coupling channel can propagate errors, contributing to λ.

2. Entanglement-Enhanced Sensitivity: Entangled states are exponentially more sensitive
to local perturbations than product states. A single-qubit error in a GHZ state corrupts the
entire N -qubit superposition. This suggests λ grows with entanglement depth, not just qubit
count.

3. Correlated Noise: Cosmic rays, TLS defects, and thermal �uctuations create spatially
correlated errors that cannot be modeled as independent single-qubit noise. These correlations
increase e�ective λ beyond naive single-qubit estimates.

The Role of QEC in Error Localization:

A key objection is that QEC codes are speci�cally designed to localize errors, potentially making
λ scale sublinearly. We address this directly:

� Surface codes [13] localize errors to topological defects (anyons), but syndrome extraction
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still requires tracking O(N) measurement outcomes per cycle. The information rate to
process these syndromes scales with N .

� Error localization reduces the logical error rate, but does not reduce the entropy

generation rate that the controller must process. The controller still receives ∼ N bits of
syndrome data per cycle.

� When errors are correlated (as in cosmic ray events), error localization partially fails.
The e�ective λ increases because multiple stabilizers are triggered simultaneously.

We therefore parameterize λN as:
λN = λ0 + αNp (10)

where p > 1 re�ects superlinear scaling due to correlations. The exponent p is architecture-
dependent:

� p ≈ 1.2�1.3: Well-isolated systems with minimal crosstalk

� p ≈ 1.5: Typical surface code with residual ZZ coupling

� p ≈ 1.8�2.0: Dense coupling or high crosstalk environments

When might λ scale sublinearly?

If future architectures achieve:

� Perfect error localization with no correlated noise

� Topological protection that intrinsically suppresses error propagation

� Quantum LDPC codes with constant-rate syndrome extraction

then p could approach or fall below 1, eliminating the ignorance wall. Recent advances (e.g.,
Google's Willow processor, December 2024 [15]) have demonstrated below-threshold operation
where logical error rates decrease with code distance. However, this does not eliminate the
capacity constraint: the controller still processes O(N) syndrome bits per cycle, and rare cor-
related error bursts (e.g., cosmic ray events) may create an ultimate �oor on achievable error
rates. The entropy generation rate λ that the controller must track remains distinct from the
logical error rate after decoding.

4.2 Scaling of Capacity (C)

The e�ective controller capacity CN depends on the syndrome extraction architecture:

Baseline (Independent Readout):

CN = N · Cqb (11)

where Cqb ≈ 106 bits/s per qubit is an order-of-magnitude estimate for superconducting sys-
tems (actual values depend on readout architecture and are not precisely characterized in the
literature).

Sublinear Scaling Factors:

11



� Wiring constraints: Physical routing limits the number of independent readout chan-
nels.

� Multiplexing overhead: Frequency-multiplexed readout reduces e�ective bandwidth
per qubit.

� Classical processing latency: Syndrome decoding time grows with code size.

� Heat load: Controller power dissipation limits cryogenic bandwidth.

These factors suggest CN scales at best linearly, and often sublinearly, with N .

4.3 The Inequality

The Ignorance Wall occurs when chaos generation exceeds capacity:

λN > CN ln 2 =⇒ λ0 + αNp > C0N ln 2 (12)

For p > 1, there exists a critical Nmax beyond which the inequality is always satis�ed. Beyond
this point, adding qubits adds more entropy than the controller can drain. The logical qubit
collapses not because of noise, but because the controller is saturated.

5 Empirical Evidence: The Signature of Saturation

5.1 Retrospective Analysis: Model-Based Classi�cation

We present forensic analysis of high-energy events (cosmic rays) in superconducting processors
using model-based classi�cation [2]. The methodology �ts multiple functional forms (ex-
ponential, sigmoid, delayed-exponential, rational) to each recovery curve and selects the best
model via AICc (corrected Akaike Information Criterion). Events are classi�ed across multiple
analysis windows (60, 100, 150 ms) to identify stable populations.

Classi�cation Categories:

� Stable Fast: Best-�t model is fast-geometry (exponential or rational) across all windows.
Consistent with capacity-wins dynamics.

� Stable Delayed: Best-�t model is delayed-geometry (sigmoid or delayed-exponential)
across all windows. Consistent with chaos-wins dynamics where λ > C ln 2.

� Flip/Boundary: Classi�cation varies across windows; events near the decision threshold
with weak model discrimination (|∆AICc| < 4).

This approach avoids the �Average Fallacy� by revealing population structure rather than treat-
ing all events as a single distribution.

Methodological Note: The model-based approach supersedes earlier derivative-test heuristics
(tpeak classi�cation), which produced in�ated estimates of the delayed-geometry fraction. The
derivative test remains a useful intuitive entry point but is not the primary classi�er. Formal
mixture modeling (Hartigan's dip test) has been applied to LIGO data, con�rming departure
from unimodality in the pooled distribution [2].
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Figure 1: Evidence strength by stability class in Google Sycamore cosmic ray data (n=230 events). Left: Median
|∆AICc| per event by stability class. Right: Distribution of evidence strength. Stable IOF (delayed-geometry,
n=15, 6.5%) shows stronger model discrimination than Stable STD (fast, n=68, 29.6%) or Flip events (n=147,
63.9%). Dashed lines indicate positive (|∆AICc| > 4) and strong (|∆AICc| > 10) evidence thresholds. Data
from [6], analysis from [2].

5.2 Empirical Validation: Two Regimes Observed

Comparison of cosmic ray recovery data from two independent superconducting qubit experi-
ments reveals patterns consistent with the Ignorance Wall framework:

System Qubits Recovery Time (τ) Recovery Shape IOF Interpreta-
tion

Google (McEwen
2022)

26 ∼26 ms median
(IQR: 24�28 ms)

Mixed:
29.6% Stable Fast
6.5% Stable De-
layed
63.9% Boundary

Mixed regime
(marginal C/λ)

Chinese (Li et al.
2025)

63 22�213 µs Uniformly Fast
(qualitative base-
line)

Capacity-Wins
(C ≫ λ/ ln 2)

Table 1: Comparison of recovery regimes. Google results from model-based classi�cation with 3-window stability
analysis [2]. Chinese results treated as qualitative baseline due to di�erent observables and pipeline.

Mixed Regime (Google): In the Google Sycamore processor, model-based classi�cation iden-
ti�es a small but stable delayed-geometry population (6.5% of 230 events). These events show
nonzero onset delay (D > 0) before recovery begins. The majority (63.9%) are boundary/�ip
events where classi�cation depends on analysis window choice, indicating they lie near the deci-
sion threshold. Notably, early-time curvature does not discriminate between populations in this
platform (Mann-Whitney p = 0.44); the evidence rests on model geometry alone.

The stable delayed population provides weak evidence for hesitation-like dynamics�su�cient to
warrant prospective tests that directly manipulate controller bandwidth, but not strong enough
(absent classi�er-external discrimination) to claim a robust IOF signature.

Capacity-Wins Baseline (Chinese): The 63-qubit processor showed uniformly fast expo-
nential recovery (sub-millisecond). This is consistent with capacity-wins operation where the
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e�ective monitoring bandwidth exceeds the perturbation rate. However, direct comparison is
limited by di�erences in observables (charge-parity jumps vs. aggregate error counts) and sam-
pling cadence (5.6 µs vs. 100 µs).

Interpretation: The contrast is suggestive of two-regime structure but not con�rmatory. The
Chinese system appears to operate in the capacity-wins regime, while a subset of Google events
show dynamics consistent with the chaos-wins regime. De�nitive validation requires controlled
experiments where bandwidth is varied on a single system while holding other parameters con-
stant (Section 6).

Caveats on Cross-System Comparison:

We acknowledge signi�cant limitations in comparing these two systems [2]:

� Di�erent observables: Google data tracks aggregate error counts; Chinese data tracks
charge-parity jumps and bit-�ip probability�fundamentally di�erent physical quantities.

� Di�erent sampling cadence: 100 µs (Google) vs. 5.6 µs (Chinese)�a factor of ∼18
di�erence that a�ects what dynamics are resolvable.

� Di�erent architectures: Google uses transmon qubits; the Chinese system uses a dif-
ferent design with di�erent coherence properties.

� Di�erent control systems: Readout chains, FPGA implementations, and feedback la-
tencies di�er.

These di�erences mean the comparison is suggestive rather than con�rmatory. The observation
that recovery dynamics di�er between platforms is consistent with�but does not prove�the
Ignorance Wall hypothesis. De�nitive validation requires a controlled test (Section 6) where
bandwidth is varied on a single system while holding other parameters constant.

Key Implication: If the two-regime structure is real, the question for scalability becomes
�how does the boundary scale with N?� As systems grow, even well-engineered controllers may
approach the critical boundary unless CN scales faster than λN . The weak evidence from current
data motivates�but does not establish�this concern.

6 Falsi�ability: The Bandwidth-Coherence Correlation

The validity of the Nmax limit rests on the premise that coherence is a function of control
bandwidth. This o�ers a decisive experimental discriminator against standard environmental
noise models.

6.1 The Power-Scaling Test

Objective: Determine whether the current coherence limit is capacity-limited (IOF applies) or
environmentally limited (IOF does not apply).

Protocol: In a stable N -qubit system (e.g., N = 50), vary the classical controller bandwidth
C while holding system temperature constant. Critically, include a thermal control:
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� Group A (Dummy Readout): Drive readout ampli�ers at maximum bandwidth but
discard all measurement data. This isolates the thermal e�ect of high-bandwidth operation
without information extraction.

� Group B (Active Readout): Same power as Group A, but process syndrome data for
error correction.

Operational De�nitions:

� How to vary C: Increase syndrome extraction rate rsyn (e.g., from 10 kHz to 100 kHz)
while maintaining measurement �delity. Alternatively, reduce decoder latency to enable
faster feedback.

� Temperature control: Monitor mixing chamber temperature and qubit chip tempera-
ture (via qubit frequency drift or T1 stability). Active feedback should maintain |∆T |/Tset <
1% during bandwidth variation (see experimental protocol [1] for preregistered criteria).

� Primary endpoint: Multi-qubit coherence time τcoh measured via randomized bench-
marking or logical error rate per QEC cycle.

� Secondary endpoint: Recovery curve geometry (fraction of delayed-onset events) as a
function of C.

The Prediction:

∂τcoh
∂C

{
≈ 0 Standard Decoherence (Thermal Limit)

> 0 Ignorant Observer (Information Limit)
(13)

The di�erence (B−A) isolates the information processing bene�t from the thermal cost, providing
a clean signature of the Information-Zeno E�ect.

Interpretation: If increasing the readout rate (without heating the sample) extends the multi-
qubit coherence time, the system is in the capacity-limited regime (C < λ/ ln 2). This would
con�rm that the �Ignorance Wall� is the active constraint. If coherence degrades or remains �at,
the limit is purely environmental, and the Nmax derivation does not apply to current hardware.

7 Discussion: The Blind Controller Problem

7.1 Implications for Architecture

The Ignorance Wall framework has immediate implications for quantum computer design:

1. Scalability is Fundamentally Bounded

We cannot scale N inde�nitely without super-linear scaling of C. Current architectures assume
that adding qubits adds computational power; the Ignorance Wall reveals that adding qubits
also adds entropy faster than the controller can drain it. Beyond Nmax, each additional qubit
degrades rather than enhances computational capability.

2. The Heat-Bandwidth Tradeo�
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Increasing C requires increasing power dissipation P , which generates heat. At cryogenic tem-
peratures, cooling power is severely limited (∼ µW at 20 mK). This creates a fundamental
engineering constraint: the controller's heat load competes with the qubit's cooling budget.

3. QEC Code Design

Current QEC codes (surface codes, color codes) are designed assuming unlimited classical pro-
cessing. The Ignorance Wall framework suggests a new design criterion: codes should minimize
the syndrome entropy rate λsyn, not just the logical error rate. A code that generates fewer bits
of syndrome data per cycle may outperform a theoretically superior code that overwhelms the
controller.

4. Readout Architecture

Multiplexed readout (reading multiple qubits through shared lines) reduces wiring complexity
but increases λ by correlating measurement errors. Dedicated readout per qubit increases C
but adds heat load. The optimal architecture depends on where the system sits relative to the
ignorance wall.

7.2 Distributed Control Architectures

A signi�cant objection is that our analysis assumes a centralized controller, while modern quan-
tum computing roadmaps emphasize distributed architectures. We address this directly:

Hierarchical Control: Modern systems use multi-tier control: local cryo-CMOS for fast feed-
back, intermediate FPGAs for syndrome decoding, and room-temperature classical compute for
high-level scheduling. Does this change the scaling?

� Local control can reduce latency but not total bandwidth. Each local controller still
processes syndromes from its qubit subset; the aggregate bandwidth requirement is un-
changed.

� Parallel syndrome extraction distributes the computational load but does not reduce
the information rate entering the classical layer. The total entropy that must be processed
remains ∼ N bits per cycle.

� The bottleneck shifts from syndrome extraction to inter-controller communication. As
local controllers must coordinate for global error correction (e.g., boundary matching in
surface codes), communication bandwidth becomes the limiting factor.

Photonic Interconnects: Optical links o�er higher bandwidth than electrical connections.
However:

� Photonic-to-electronic conversion adds latency and power dissipation

� The fundamental bound remains: total information rate must exceed λN

� Higher bandwidth enables larger Nmax but does not eliminate the wall

Quantum Error Correction with Parallel Decoding: Parallel decoders (e.g., Union-Find,
MWPM variants) reduce decoding latency but process the same total information. The Igno-
rance Wall concerns rate, not latency.
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Conclusion: Distributed architectures can increase CN by improving parallelism and reducing
bottlenecks, potentially raising Nmax by 1�2 orders of magnitude. However, they do not change
the fundamental scaling relationship: if λN grows superlinearly while CN grows linearly, a wall
exists regardless of architecture.

7.3 The Ignorance Wall

Applying the Ignorance Wall framework across hardware platforms reveals a structural bi-
furcation: each technology encounters a di�erent manifestation of the fundamental constraint.
Figure 2 presents the central result of this analysis.

Figure 2: The Ignorance Wall (Model-Dependent Forecast). Comparative scaling analysis of information
de�cit rates for three leading quantum architectures, under the hypothesis that the IOF framework applies.
Superconducting (vermillion): Superlinear scaling of chaos (p = 1.5 due to ZZ crosstalk) intersects linear
capacity at Nmax ∼ 104�105 qubits (central estimate ∼77,000 for p = 1.5, α = 2.5 × 103; range 103�106 for
p ∈ [1.3, 1.8]). Trapped Ions (blue): Low crosstalk (p = 1.2) prevents an intersection, but the system is limited
by low absolute bandwidth. Photonic (green): Linear scaling (p = 1.0) means no scaling wall exists if the
base-rate threshold is passed. Uncertainty: The location of the wall depends sensitively on the exponent p,
which has not been directly measured. These are model-dependent forecasts requiring empirical calibration, not
predictions.

Figure 3 provides a conceptual summary of the four architectural cases; Table 2 gives the quan-
titative parameters.

7.3.1 Complexity Saturation: Superconducting Qubits

Superconducting transmon qubits�currently the dominant commercial technology�exhibit su-
perlinear chaos scaling (p ≈ 1.5) due to ZZ crosstalk and correlated errors. Using order-of-
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magnitude parameters (Cqb ≈ 106 bits/s, λ0 ≈ 104 s−1 from T2 ∼ 100 µs), we �nd a model-
dependent estimate:

Nmax ∼ 103�106 qubits (depending on p) (14)

The central estimate for p = 1.5 is ∼77,000 qubits, but this is highly sensitive to the exponent
p, which has not been directly measured in production systems. The range spans:

� p ≈ 1.3 (optimistic, low crosstalk): Nmax ∼ 106

� p ≈ 1.5 (typical surface code): Nmax ∼ 105

� p ≈ 1.8 (pessimistic, dense coupling): Nmax ∼ 103

Even under optimistic assumptions, the wall remains orders of magnitude below the ∼20 mil-
lion physical qubits required for RSA-2048. This is the only technology that hits a de�nite
qubit-count wall�the technology receiving the most investment faces the hardest ceiling.
Calibration needed: The exponent p could in principle be extracted from multi-qubit coher-
ence measurements as a function of N ; such calibration would sharpen the estimate.

7.3.2 Bandwidth Latency: Trapped Ions

Trapped ions [14] do not hit an Nmax from scaling exponents�their superior isolation yields
very low α, and the chaos-capacity curves never intersect. However, this does not mean ions
escape the Ignorance Wall.

The catch is Cqb: �uorescence readout is ∼100× slower than superconducting syndrome extrac-
tion. Ions face a Patience Wall, not an Ignorance Wall. The relevant constraint becomes the
Algorithm Depth Multiplier:

(λN − CN ln 2) ·G · tgate ≲ 1 (15)

With tgate ∼ 100 µs (versus ∼30 ns for transmons), deep algorithms timeout before completion.
Ions scale in qubit count but not in algorithm depth. For cryptographic applications requiring
G ∼ 1010 gates, the low bandwidth becomes fatal.

7.3.3 Single-Mode Feasibility Threshold: Photonic Qubits

Photonic systems [16] in current waveguide-interferometer architectures exhibit linear scaling
(p ≈ 1, α ≈ 0) because photons in separate modes are non-interacting�there is no direct
ZZ-like crosstalk. Both chaos and capacity scale linearly with N :

λN ≈ λ0 ·N, CN = Cqb ·N [bits/s] (16)

The stability condition compares λN to CN ln 2 (converting bits to nats). If the per-mode
threshold is passed and correlated loss/noise does not induce superlinear growth in λN , the
model predicts no additional crosstalk-driven scaling wall. Practical limits may still arise from
resource overhead, feedforward latency, and classical decoding bandwidth�but these are not
captured by the superlinear-λ mechanism analyzed here.

The constraint for photonics is a single-mode feasibility threshold�the C > λ/ ln 2 condi-
tion applied at the per-mode level:

Cqb > λ0 (threshold condition) (17)
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If photon loss exceeds detection bandwidth (using illustrative values: λ0 ∼ 107 s−1 for waveguide
loss, Cqb ∼ 109 bits/s for detector bandwidth), the system fails immediately. But if this threshold
is passed, scaling to large N is thermodynamically straightforward.

This reveals a structural bifurcation in quantum architectures:

� Superconducting: Easy to start, hard to �nish. Low λ0 means N = 1 is trivial, but
superlinear crosstalk (p = 1.5) creates a ceiling.

� Photonic: Hard to start, easy to scale. High λ0 makes N = 1 the critical challenge, but
linear scaling means no ceiling once the threshold is crossed.

Current photonic systems (PsiQuantum, Xanadu) are �ghting to cross this threshold. The
IOF framework correctly predicts that their scaling problem is fundamentally di�erent from
superconducting�not harder or easier, but structurally distinct.

7.3.4 The Topological Escape (Theoretical)

Native topological qubits�built from non-Abelian anyons with intrinsic error suppression�
could achieve p < 1 (sublinear scaling). If errors require non-local operations to propagate, λN

grows slower than CN , and the ignorance wall vanishes.

Critical caveat: No native topological qubit has been demonstrated. Current �topological�
demonstrations (Quantinuum [18], Google [19]) are simulations running on trapped-ion or trans-
mon hardware. These inherit the limitations of their underlying substrate:

The only architecture that theoretically escapes the Ignorance Wall is the only one

that has not been built. All existing �topological� demos are simulations running on

hardware that IS limited.

Google's �topological qubit� is made of transmons; it is therefore subject to the transmon limit
(Nmax ∼ 105). In fact, the overhead of encoding topological states makes it worse�the e�ective
N is reduced.

7.3.5 Quantitative Comparison

Table 2 summarizes the key parameters and limiting factors for each technology.

Technology Cqb (bits/s) λ0 (s
−1) p Limiting Factor

Superconducting 106 104 1.5 Complexity wall (Nmax ∼ 105)
Trapped ions 2× 103 0.1 1.2 Bandwidth (algorithm depth)
Photonic 109 107 1.0 Single-mode threshold; no crosstalk wall if passed
Topological 105 10−2 < 1 None (theoretical only)

Table 2: Order-of-magnitude illustrative parameters for di�erent qubit technologies. Superconducting values
are tuned to match Google Sycamore data under model assumptions; trapped ion and photonic values re�ect
typical reported timescales but are not directly measured inputs to the model. The �Limiting Factor� column
identi�es the structural barrier each technology encounters under this framework.

Key Insight: The Ignorance Wall framework provides a uni�ed lens for comparing hardware
platforms, but �no Nmax� does not mean �no limitation.� Each technology encounters a di�erent
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barrier�complexity, bandwidth, or threshold�and the only theoretical escape (topological)
remains unrealized.

Figure 3: Structural Bifurcation Summary. Each hardware platform encounters a di�erent barrier within
the Ignorance Wall framework. Superconducting systems hit a complexity wall; trapped ions face bandwidth
latency (patience wall); photonic systems must overcome a loss threshold before any scaling. Only native topo-
logical qubits (theoretical) escape via sublinear scaling.

7.4 Alternative Explanations

We brie�y address why standard explanations are insu�cient:

Correlated Noise: Standard models attribute scaling di�culties to spatially correlated noise
(cosmic rays, TLS defects). While these contribute, they do not explain why increasing controller
bandwidth should improve coherence. Correlated noise is a symptom; controller saturation is
the mechanism.
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Crosstalk: ZZ coupling and microwave crosstalk increase λN , but these are already included
in our scaling analysis. The question is not whether crosstalk exists, but whether its e�ects can
be overcome by better control�the Ignorance Wall says no.

Engineering Limitations: One might argue that current limitations are merely technological.
However, the thermodynamic Catch-22 (Section B) demonstrates that C and λ are coupled
variables. No amount of engineering can decouple them without violating thermodynamics.

7.5 Correlation vs. Causation: The Hypothesis Status

We emphasize that the Ignorance Wall framework is a hypothesis, not a proven theory. The
evidence presented is correlational:

� The bimodal recovery distribution is consistent with controller saturation but does not
prove it.

� The contrast between Google and Chinese systems is suggestive but confounded by archi-
tectural di�erences.

� The scaling arguments are plausible but depend on parameters (p, α) that are not precisely
measured.

What would con�rm the hypothesis?

The bandwidth-coherence test (Section 6) provides a decisive discriminator:

� If coherence improves with bandwidth at constant temperature, the limit is information-
theoretic.

� If coherence is independent of bandwidth, the limit is thermal/environmental.

� If coherence degrades with bandwidth (due to heating), the thermal confound dominates.

What would falsify the hypothesis?

1. Demonstration of N > Nmax (predicted) with sustained coherence and deep circuits.

2. Evidence that λN scales sublinearly (p < 1) in production systems.

3. Bandwidth-independent coherence in controlled Power-Scaling experiments.

Until the bandwidth-coherence test is performed, the Ignorance Wall remains a well-motivated
hypothesis warranting experimental investigation, not an established result.

7.6 Why the Barrier May Be Fundamental

The preceding analysis might be dismissed as describing current technological limitations rather
than fundamental physics. Three arguments suggest the information-theoretic barrier is not
purely engineering:
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1. The Data-Rate Theorem as Mathematical Law. The requirement Cmin = λ/ ln 2 is not
an engineering approximation but a theorem of control theory [4,5]. It applies to any controller�
classical, quantum, biological, or arti�cial�attempting to stabilize an unstable system. The
proof is information-theoretic: tracking an unstable mode generates entropy at rate λ; any
channel with capacity C < λ/ ln 2 cannot drain this entropy as fast as it is produced. No
implementation detail can circumvent a mathematical theorem.

2. Physical Necessity of Finite Capacity. The Margolus�Levitin quantum speed limit [10]
bounds information processing by available energy: C ≤ 2E/(πℏ). For a QEC controller with a
given energy budget, this sets an absolute ceiling on syndrome processing rate�no amount of
engineering can exceed what the laws of quantum mechanics permit. If C → ∞, then E → ∞.
But in�nite energy density in any �nite region produces gravitational collapse. Thus in�nite
capacity is not merely di�cult to achieve�it is logically impossible for any observer existing
within spacetime [3]. Finitude is not an arbitrary restriction; it is the prerequisite for existence
as a physical system. This does not tell us where the wall is, but it guarantees that some �nite
ceiling must exist.

3. Thermodynamic Cost of Information Processing. The Landauer limit [9] establishes
that erasing one bit of information requires dissipating at least kT ln 2 of energy. The e�ec-
tive capacity is Ce� = η × P/(kT ln 2), where 0 < η ≪ 1 absorbs architecture limitations,
non-reversible computation overhead, and thermodynamic ine�ciency. Current cryo-CMOS op-
erates ∼7 orders above Landauer (η ∼ 10−7). But even with improved η, increasing C requires
increasing power dissipation, which generates heat, which degrades coherence, which increases
λ. This coupling�the Catch-22 of Section B�is thermodynamic, not technological.

Structure vs. Location: These arguments establish that the structure of the constraint (ca-
pacity vs. chaos) is fundamental�no technology can achieve C = ∞, and any �nite C faces
the Data-Rate Theorem. However, the location of the wall (whether at N ∼ 103, 105, or 107)
depends on engineering parameters that can be improved. Technology can push C higher and
λ lower, potentially by many orders of magnitude, but cannot eliminate the trade-o� itself. For
a fuller treatment of how �nite capacity constrains observer structure, see [3].

The Question for Experiment: Whether the current wall is practically limiting depends on
parameters (p, α) that have not been measured. The bandwidth-coherence test (Section 6) can
determine whether current systems are capacity-limited or environmentally limited. If capacity-
limited, engineering improvements will shift the wall; if environmentally limited, the IOF frame-
work does not apply to present hardware.

8 Conclusion

Under the assumptions of this framework, we have derived an upper bound on the scalability of
quantum computers based on the thermodynamics of the control loop. If the Ignorance Wall hy-
pothesis is correct, then just as a biological observer has a temporal integration limit (∼300ms),
a quantum controller has a complexity limit (Nmax). Fault tolerance becomes impossible when
the error correction mechanism itself is informationally saturated.

The key �ndings are:

1. Nmax exists (under the hypothesis) and is �nite for any architecture where λN scales
superlinearly.

2. Nmax ∼ 103�106 for superconducting technology, depending on the unmeasured exponent
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p. Even under optimistic assumptions (p ≈ 1.3), the wall remains below crypto-relevant
scale if the hypothesis is correct.

3. Structural bifurcation: Superconducting systems hit a complexity wall; trapped ions
and photonics avoid this wall but face di�erent barriers. �Unbounded� does not mean
�viable.�

4. Deep algorithms are even more constrained due to theG·tgate multiplier�particularly
limiting for trapped ions.

5. The thermodynamic Catch-22 suggests engineering around this limit is di�cult: C
and λ are coupled variables.

Implications for the 2035 RSA Timeline

Current policy estimates for cryptographically-relevant quantum computing (often cited as
�2035�) are largely based on extrapolating superconducting roadmaps (IBM, Google). If the
IOF hypothesis is correct and p ≳ 1.3, that extrapolation would fail: the wall would remain
orders of magnitude below the ∼20 million physical qubits required for RSA-2048. However, this
conclusion depends on unmeasured parameters. The hypothesis requires experimental validation
before policy implications can be drawn.

This forces consideration of alternative architectures�but each encounters its own barrier:

Trapped Ions: The Runtime Wall. Ions avoid the complexity wall (p ≈ 1.2), but gate times
are ∼1000× slower than superconducting. Breaking RSA-2048 requires ∼1015 gate operations.
At ion gate speeds, this calculation would take centuries�longer than the operational lifespan
of any machine. Ions are not limited by chaos but by runtime.

Photonics: The Resource Wall. Photons avoid the complexity wall (p = 1.0), but compen-
sating for photon loss requires massive multiplexing. Each logical qubit may require thousands
of optical components and detectors. A 20-million qubit photonic computer would require in-
frastructure at industrial scale, with speed-of-light latency between components becoming the
new bottleneck. Photons are not limited by chaos but by resource overhead.

Trade-o� Invariance. The pattern suggests a deeper principle: one can trade complexity for
time, or time for resources, but the total cost cannot be eliminated. This echoes the thermody-
namic constraints underlying the IOF framework itself.

� Superconducting: Fast and compact, but untrackable. Limited by complexity saturation.

� Trapped Ions: Trackable and clean, but slow. Limited by algorithm runtime.

� Photonic: Fast and trackable, but ine�cient. Limited by resource overhead.

The Ignorance Wall is the �rst barrier. The Mortality Wall and Resource Wall wait behind it.

Falsi�ability and the Path Forward

This is a theoretical prediction under the model's assumptions, not a proven result. The key
assumptions�superlinear scaling of λN , the applicability of the Data-Rate Theorem to quantum
control, and the thermodynamic coupling of C and λ�require rigorous experimental confronta-
tion. The bandwidth-coherence test proposed in Section 6 provides a decisive discriminator.
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If con�rmed, the implications are signi�cant: the path forward would require treating Informa-
tion Capacity as a primary physical resource, equal in importance to Coherence Time. The 2035
timeline would need substantial revision. If falsi�ed�for example, by demonstrating p < 1 or
bandwidth-independent coherence�the quantum computing roadmap remains intact.

The Information-Zeno E�ect. The predicted relationship ∂τcoh/∂C > 0 represents what
we term the Information-Zeno E�ect : su�cient measurement bandwidth can �freeze� entropic
decay, analogous to how the Quantum Zeno E�ect freezes unitary evolution through frequent pro-
jective measurements. The key di�erence is thermodynamic rather than quantum-mechanical:
the controller �observes� error syndromes fast enough to counteract scrambling. This provides
the physical intuition for why bandwidth improvements should translate to coherence improve-
ments.

The qubit is not a magical vessel of in�nite coherence. It is a physical system subject to the
same thermodynamic constraints as any other.
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Appendices

A Numerical Estimates: Where is Nmax?

A.1 The Core Inequality

The ignorance wall occurs when:
λN = CN ln 2 (18)

Rearranging for Nmax:
λ0 + αNp

max = Nmax · Cqb · ln 2 (19)

A.2 Parameter Estimates from Current Hardware

1. Single-Qubit Capacity (Cqb)

The e�ective capacity per qubit is bounded by the syndrome extraction rate and measurement
�delity:

� Syndrome extraction cycle: ∼1 µs (state-of-the-art superconducting)

� Bits per cycle: ∼1 bit (binary syndrome)

� Measurement �delity: ∼99% → e�ective bits: ∼0.99 bit

Cqb ≈ 106 bits/s per qubit (20)

2. Base Chaos Rate (λ0)

From T2 coherence times:

� Best superconducting T2: ∼100-150 µs

� This gives a base dephasing rate: λ0 ≈ 1/T2 ≈ 104 s−1

3. Chaos Scaling Exponent (p) and Coe�cient (α)

This is the critical parameter. From crosstalk and coupling analysis:

Conservative (nearest-neighbor, low crosstalk):

� p ≈ 1.2

� α ≈ 102 s−1

Realistic (surface code with residual ZZ coupling):

� p ≈ 1.5
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� α ≈ 103 s−1

Pessimistic (dense coupling, high crosstalk):

� p ≈ 2.0

� α ≈ 103 s−1

A.3 Solving for Nmax

The numerical solution is presented in Figure 2 (main text). Here we summarize the calibration
and uncertainty.

Central Estimate (p = 1.5, α = 2.5× 103, λ0 = 104)

Using order-of-magnitude parameters informed by Google Sycamore data (T2 ∼ 100 µs, 1 µs
readout cycles), the central estimate is:

Nmax ∼ 105 qubits (order of magnitude) (21)

Sensitivity to Exponent p:

The estimate is highly sensitive to the chaos scaling exponent p, which has not been directly
measured:

� p = 1.3 (optimistic, low crosstalk): Nmax ∼ 106

� p = 1.5 (typical surface code assumption): Nmax ∼ 105

� p = 1.8 (pessimistic, dense coupling): Nmax ∼ 103

This three-order-of-magnitude range re�ects genuine uncertainty in the model parameters, not
robustness. The exponent p could in principle be calibrated from measurements of multi-qubit
coherence time as a function of N , but such data are not yet available in the literature. Until p
is measured, the �wall location� remains a model-dependent forecast, not a prediction.

A.4 Comparison to Crypto-Relevant Scales

Application Logical Qubits Physical Qubits (d=20) Status

Shor (256-bit ECDSA) ∼2,500 ∼2.5 ×106 Far beyond Nmax

Shor (2048-bit RSA) ∼4,000 ∼4 ×106 Far beyond Nmax

Grover (256-bit) ∼5,000 ∼5 ×106 Far beyond Nmax

Recent hardware (2024) N/A ∼100�1,000 Below all estimates

Table 3: Physical qubit requirements assume standard surface code overhead with code distance d = 20, yielding
∼1000 physical qubits per logical qubit. Estimates based on Fowler et al. [13] and subsequent re�nements.

Key Observation: If the IOF framework applies and p ≳ 1.3, then Nmax remains orders of
magnitude below the physical qubit counts needed for cryptographically relevant algorithms.
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Even under optimistic assumptions (p ≈ 1.3, Nmax ∼ 106), the wall is below the ∼4 million
qubits required for RSA-2048. However, this conclusion depends on the unmeasured exponent
p; if future architectures achieve p ≲ 1.2 through improved isolation, the wall could be pushed
higher or eliminated.

A.5 The Algorithm Depth Multiplier

The above assumes shallow circuits. For deep algorithms, the condition becomes:

(λN − CN ln 2) ·G · tgate ≲ 1 (22)

Where:

� G = circuit depth (number of gate layers)

� tgate ≈ 20− 50 ns for superconducting

For Shor's algorithm on 256-bit keys:

� G ≈ 1010 gates

� tgate ≈ 30 ns

� Talg ≈ 300 seconds

This massively tightens the constraint. Even small positive γN = λN − CN ln 2 makes the
LHS enormous.

Implication: Deep algorithms hit the ignorance wall at much smaller N than shallow ones.

A.6 Why Current Systems Seem to Work

Current demonstrations (∼100-1000 qubits) are:

1. Running shallow circuits (small G)

2. Using partial entanglement (not all-to-all)

3. Operating below Nmax for their speci�c γN

The �quantum advantage� claims (e.g., random circuit sampling) deliberately avoid deep coher-
ent algorithms because those would fail.

A.7 Predictions

1. Coherence Cli�: As N increases past ∼1000 qubits, multi-qubit coherence times will
drop faster than 1/N .

2. QEC Diminishing Returns: Surface code with d > 10 − 15 will show diminishing
improvement in logical error rate.

27



3. The 104 Wall: No architecture will demonstrate > 10, 000 coherently entangled qubits
running deep algorithms.

4. Power-Coherence Tradeo�: Increasing classical control power will measurably improve
coherence (the IOF signature).
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B The Thermodynamic Catch-22: Why Nature Fights Back

The core insight is that the standard roadmaps assume C and λ are independent parameters
that can be optimized separately. Under the Ignorance Wall hypothesis, they are not. They
are coupled variables: improving one tends to degrade the other through thermodynamic
feedback.

B.1 The Trap of Increasing C (The Thermal Feedback)

The naive solution: �Just build a bigger controller! Faster FPGAs! More optical �bers!�

The Problem: The controller is physically connected to the quantum system.

� To increase Information Capacity (C), you must increase Power Dissipation (P ).

� P generates Heat.

� Heat travels down the control lines to the chip.

� Heat generates phonons and quasiparticles in the superconducting substrate.

� Result: Increasing C automatically increases λ.

The Numbers:
Pctrl = CN · Ebit (23)

Where Ebit is energy per bit processed. At cryogenic temperatures:

� Landauer limit: Ebit ≥ kT ln 2

� At 20 mK: Ebit,min ≈ 10−25 J

� Practical cryo-CMOS: Ebit ≈ 10−18 J (roughly 7 orders above Landauer, i.e., e�ciency
η ∼ 10−7)

The Landauer bound is a theoretical �oor, not operational capacity; Ce� is architecture-limited
and empirically inferred.

For CN = 1012 bits/s (needed for 106 qubits):

Pctrl ≈ 1012 × 10−18 = 10−6 W = 1 µW (24)

This seems small, but at 20 mK, cooling power is ∼ µW scale. The controller's heat load
competes with the cooling budget.

The Catch-22: You turn up the volume to hear the music better, but the ampli�er heat sets
the speakers on �re.
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B.2 The Trap of Decreasing λ (The Control Paradox)

The naive solution: �Just isolate the qubits better! Vacuum gaps! Super-shielding!�

The Problem: To compute, you must control the qubits.

� Control requires coupling to the classical controller.

� Measurement requires coupling to the readout chain.

� Error correction requires coupling to the syndrome extraction circuit.

The IOF Limit: If you isolate the system perfectly (λ → 0), you sever the connection to the
controller. C drops to zero. You have a perfect qubit that you cannot talk to.

The Catch-22: To run an algorithm, you must open the door to the controller. Opening the
door lets the chaos in.

B.3 The Conservation of Ignorance

This suggests a new conservation law for quantum engineering:

The Controller's bandwidth (C) and the System's entropy rate (λ) are
coupled variables. You cannot optimize one without degrading the other.

Formally, we can express this as a constraint:

∂λ

∂C
> 0 and

∂C

∂λ−1
< 0 (25)

The �rst says: increasing control bandwidth increases system chaos (thermal feedback). The
second says: decreasing system chaos decreases control bandwidth (isolation paradox).

This is why scaling is logarithmic, not exponential. Every improvement �ghts a steep thermo-
dynamic gradient.

B.4 Experimental Validation: The QGEM Limit

The Conservation of Ignorance �nds striking validation in the QGEM collaboration's proposal
to test gravitational entanglement at the femtogram scale (Bose, Mazumdar, Penrose et al.,
arXiv:2509.01586, 2025).

The Setup: To maintain quantum coherence for ∼1 second at masses of 10−15 to 10−14 kg,
they require:

� Electromagnetic suppression by a factor > 106

� Vacuum of 10−12 mbar

� Cryogenic isolation at ∼1K

30



The Implication: At these extreme isolation levels, the control bandwidth approaches zero.
The only �interaction� they can use is gravity itself�the weakest force in nature. They cannot
actively error-correct, manipulate gates, or extract syndromes. The system is coherent precisely
because it is unreachable.

The Conservation Law in Action:

λ → 0 =⇒ C → 0 (26)

The QGEM proposal is the limiting case of our Catch-22: to achieve macroscopic coherence
times, they must sever almost all connection to the controller. The result is not a computer�it
is a witness. It can observe gravitational entanglement (maybe), but it cannot compute with it.

This illustrates the same isolation�control tradeo� in an extreme regime: you cannot have both
high coherence (λ → 0) and high control bandwidth (C ≫ 0). The QGEM proposal is a
conceptual illustration of this tradeo�, not direct evidence for the IOF scaling model.

B.5 The Feedback Loop

More qubits → More λN → Need more CN → More heat → Worse T2 → More λN (27)

This is not a �Catch-22� in the literary sense of an arbitrary bureaucratic trap. It is a thermo-
dynamic feedback loop with a precise mathematical structure: increasing control capacity
increases entropy generation, which increases the required control capacity.

B.6 The Only Way Out

The only escape from this trap would require breaking the C-λ coupling:

1. Topological qubits with intrinsically low λ0 that doesn't couple to control lines (not yet
realized)

2. Quantum error correction that doesn't require classical processing (unknown if
possible)

3. Room-temperature quantum coherence with macroscopic T2 (physically implausible)

None of these are on any realistic roadmap. The coupling is not accidental�it is structural.
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